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Abstract

time points.

Purpose: For differentiating tumor from inflammation and normal tissues, fluorodeoxyglucose (" FIFDG) dual time
point PET could be helpful. Albeit ['®FIFLT is more specific for tumors than ['®FJFDG; we explored the role of dual
time point ['®FIFLT-PET for discriminating benign from malignant tissues.

Methods: Before any treatment, 85 womens with de novo unifocal breast cancer underwent three PET acquisitions
at 33.94 + 801 min (PET30), 6145 + 8.30 min (PET60), and 81.06 + 12.12 min (PET80) after ['°FIFLT injection.
Semiquantitative analyses of ['®F]FLT uptake (SUV) were carried out on tumors, liver, bone marrow (4th thoracic
vertebra (T4) and humeral head), descending thoracic aorta, muscle (deltoid), and contralateral normal breast.
Repeated measures ANOVA tests and Tukey's posttests were used to compare SUVmax of each site at the three

Results: There was a significant increase in SUVmax over time for breast lesions (5.58 + 3.80; 5.97 + 4.56; 6.19 +
442; p < 0.0001) (m + SD for PET30, PET60, and PET80, respectively), and bone marrow (for T4, 821 + 3.17, 9.64 +
3.66, 10.85 + 3.63, p < 0.0001; for humeral head, 3.36 + 1.79, 3.87 + 1.89, 439 + 2.00, p < 0.0001). A significant
decrease in SUVmax over time was observed for liver (6.79 + 2.03; 6.24 + 1.99; 557 + 1.74; p < 0.0001), muscle (0.95
+0.28; 0.93 + 0.29; 0.86 + 0.20; p < 0.027), and aorta (1.18 + 0.34; 1.01 + 0.32; 0.97 + 0.30; p < 0.0001). No significant
difference was observed for SUVmax in contralateral breast (0.8364 + 0.40; 0.78 + 0.38; 0.80 + 0.35).

Conclusion: ['®F]FLT-SUVmax increased between 30 and 80 min only in proliferating tissues. This could be helpful
for discriminating between residual tumor and scar tissue.
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Introduction

Despite a lack of specificity for tumor, [**F]JFDG remains the
main tracer for positron emission tomography (PET). This
success is explained by its high sensitivity and its capability
to stage a wide variety of tumors. It has been shown that tis-
sues with high levels of glycolysis will continue to accumu-
late over time [**F]FDG as [**F]JFDG-6-phosphate [1, 2]. For
differentiating malignant lesions from inflammation and
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normal tissues, a dual time point imaging protocol has
therefore been proposed, since tumor ['*FJFDG uptake may
increase over time but remain unchanged or decreased in
normal or inflammatory tissues. Another approach is to de-
velop new PET tracers offering improved specificity for
tumor such as proliferation marker, uncontrolled tumor
proliferation being one of the fundamental characteristics of
cancer [3].

[18F]Fluorothymidine ([*®F]ELT) is the leader of fluori-
nated thymidine PET tracer, which tumor uptake is dir-
ectly related to the thymidine kinase 1 (TK1) activity.
["®F]JFLT tumor uptake reflects tumor proliferation in
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most human cancers [3, 4] and is assumed to be more
specific than [*®F]FDG but less sensitive, related to high
["®F]FLT activity in bone marrow and liver, limiting the
detection of lesions in these common sites of metastases.
In human breast cancer, high levels of TK1 activity has
been observed [5], many fold higher than those of normal
mammary tissues in particular in rapidly proliferating tis-
sues such as breast adenocarcinoma [6—8]. 5' nucleotidase
competes with TK1 and is responsible for the dephos-
phorylation of [**F]JFLT monophosphate, but its activity is
too low to balance phosphorylation of [**F]FLT. [**F]FLT
undergoes two other phosphorylations but is slightly in-
corporated into DNA due to the stability conferred by the
18F-fluorination [9]. The consequence of these metabolic
phenomena is an intracellular accumulation of [*®F]FLT,
comparable to that observed with [**F]FDG [10], and it
can be hypothesized that [Y®F]FLT accumulates over time
in tumors as seen with [**F]FDG.

There is no standardized protocol for performing
[*®F]FLT-PET scans, namely, no standardization for the
uptake period. Kenny et al in a small cohort of 15 breast
cancer patients reported that the values of semiquantita-
tive parameters evaluating [**F]JFLT uptake were similar
when monitored early (21 min) or late (90 min) post-
[*®F]FLT injection [11]. Likewise, using a 45-min dynamic
sequence immediately after intravenously administration
of [**F]FLT, Pio et al. showed that tumor uptake from the
5- to 10-min first frames was able to predict longer-term
clinical outcome [12]. Recently, Zhang et al. reported that
e 16-min dynamic PET acquisition appears to be sufficient
to provide accurate ["*F]FLT kinetics to quantitatively as-
sess the proliferation in breast cancer lesions [13]. Despite
the lack of consensus, most studies use the same settings
than those of ['*F]FDG procedures, i.e., a period of 60 +
10 min of uptake before scanning [7, 11, 14-24]. In the
present study, using a multiple-point acquisition protocol,
we aimed to study the behavior of [**F]FLT uptake over
time in different tissues in women with a de novo locally
advanced breast cancer prior the beginning of neoadjuvant
anthracycline-based chemotherapy.

Material and methods

Patients

Between February 2007 and March 2012, 122 women were
included in this multicentre FLTO01 study (NCT 00534274,

Table 1 Tumor characteristics
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13 centers, France). Inclusion criteria were non-operable
unifocal T2 or T3 breast tumor, MO whatever N, histologi-
cally proven (all types except lobular invasive grade I), not
overexpressing c-erbB2 thus eligible for a neoadjuvant
anthracycline-based chemotherapy. Noninclusion criteria
were multifocal and/or bilateral breast tumor, metastatic in-
vasion except lymph node involvement, inflammatory breast
tumors, patient already included in another trial with experi-
mental therapeutic molecule, pregnancy, woman deprived
of liberty or under guardianship, inability to submit follow-
up medical testing.

Eighty-five women (age : 49.39 + 10.30 years (m + DS);
bodyweight: 67.49 + 13.56 and BMI : 25.47 + 4.58) had a
complete three-point acquisition protocol at baseline
[*®F]JFLT-PET, i.e., before the beginning of the neoadju-
vant chemotherapy.

This study was approved by the ethics committee of
the University Hospital of Angers, and all patients signed
their informed consent before enrollment.

Histology

Three 14G (or 16 G) micro-biopsies, one of which was
frozen, were performed under ultrasound control for each
tumor, with histological and histopronotic grade deter-
mination according to modified Scarff-Bloom-Richardson.
Histological analysis of these 85 tumors revealed 73 ductal
carcinomas, 10 lobular carcinomas, 1 metaplastic carcin-
oma, and 1 adenoid cystic carcinoma, among which 4 SBR
I, 46 SBR II, 34 SBR III, and 1 indeterminable SBR grade
(Table 1).

Study design

Before inclusion, a conventional staging was performed
in all patients, i.e., clinical examination, bilateral mam-
mogram, breast ultrasound, and echo-guided biopsy for
histological analysis. The patients were included if they
met all inclusion criteria without any noninclusion cri-
teria. The [*®FJFLT-PET examination was performed
away from the biopsy (at least 10 days) but as soon as
possible thereafter, not to delay the onset of the neoad-
juvant chemotherapy.

Combined ['®FIFLT-PET/CT studies
The same acquisition ['*F]JFLT-PET procedure was
followed by all the 13 centers.

Tumors Total SBRI SBRII SBR Il Indeterminable SBR
Ductal carcinoma 73 4 36 32 1
Lobular carcinoma 10 0 9 1 0
Metaplastic carcinoma 1 0 0 1 0
Adenoid cystic carcinoma 1 0 1 0 0
Total 85 4 46 34 1
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Patients were not fasting but well oral hydrated. A ven-
ous catheter with an infusion of 500 mL of saline serum
was placed in a peripheral vein (in the contralateral arm to
the breast tumor). According to the type of [**F]FDG-PET
scanner used, a [*®F]JFLT dose of about 3 MBq/kg (3D
mode) or about 5 MBq/kg (2D mode) body weight was
injected (mean = SD, 4.54 + 0.81 MBq/kg; min—max,
2.85-6.41 MBq). The mean + SD-injected dose was
305.53 + 77.68 MBq (min-max: 137-495 MBq).

After an uptake phase of 20 min, the patient was set in
prone position in the PET machine, and the first PET
acquisitions (PET30) focused on breasts and axillae
which started immediately (uptake times; m + SD: 33.94
+ 8.01 min.). For all series of PET/CT images, a low-
dose CT scans were acquired first (120 to 140 keV; 80 to
100 mAs, depending on the routine procedure of each
center), followed by PET scans with an acquisition time
of 5 min per bed position. At the end of PET30 acquisi-
tions, the patient remained in the PET system until the
start of the second PET (PET60) acquisitions focused on
breasts and axillae with exactly the same settings (uptake
time; m + SD: 61.45 + 8.30 min.). Thereafter, the patient
was set in supine position for the whole body PET scan
(PET80) (pelvis to base of the skull, uptake phase (up-
take times; m + SD: 81.06 + 12.12 min)).

The CT data were used for attenuation correction, and
["*F]JFLT-PET images were reconstructed by using a
standard iterative algorithm depending on each type of
PET machine (ordered subset expectation maximization
or row-action maximalization-likelihood iterative algo-
rithm). A centralized reading was performed with a dedi-
cated software providing multiplanar reformatted images
of non-attenuated PET, attenuated PET, CT, and fused
data with linked cursors IMAGYS® Workstation, 2010 —
Kéosys, St Herblain, France).

['8FIFLT-PET data analysis

Semiquantitative analysis of ['"*FJFLT uptake has been
carried out using standardized uptake values (SUV) nor-
malized by body weight.

Differents types of SUVs were computed for breast tu-
mors: maximum SUV (SUVmax; maximum pixel value),
mean SUV (SUV41; computed on a 3D isocontour at
41% of the maximum pixel value), and peak-equivalent
SUVs (SUVpeak computed on a 3D ROI of 1 cm® con-
taining the maximum pixel value but not necessarily
centered by the maximum pixel value).

For normal tissues, SUVmax and SUVmean were calcu-
lated on the liver (3D ROI of 3 cm diameter drawn on the
right liver area following PERCIST recommendations [25])
and on a 3D ROI of 1 cm diameter for the others tissues,
i.e., contralateral breast, descending aorta, muscle (deltoid),
and bone marrow (humeral head and T4 vertebral body).
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Statistical analysis
Comparisons of ["*F]FLT SUV in normal tissues and tu-
mors, i.e., between PET30, PET60, and PET80 data were
carried out by using variance analysis tests (repeated
measures one-way ANOVA). These analyses were done
for each type of SUV and SUV ratio. Tukey’s multiple
comparison posttests were used for identifying the sig-
nificant differences between two sets of data.
About 0.05 was set at the level of statistical significance.
All statistical tests were performed with Prism® 4 for
Macintosh, version 6.0 h, 2015, Graphpad® software Inc.,
La Jolla, CA 92037 USA)

Results

SUVmax was chosen as the parameter of reference for
describing the results of the present study. Endeed,
SUVmax is the most documented semiquantitavive PET
parameter in the literature, and furtheremore in this
study, SUVpeak and SUVmean values followed most
often the same profiles as SUV max values (in case of
different behaviors between the different type of SUV,
these differences have been reported).

Tumor characteristics

Histological analysis of these 85 tumors revealed 73
ductal carcinomas, 10 lobular carcinomas, 1 metaplastic
carcinoma, and 1 adenoid cystic carcinoma, among
which four SBR I, 46 SBR II, 34 SBR II, and 1 indeter-
minable SBR grade (Table 1).

Biodistribution of ['®FIFLT in normal tissues

Whatever the type of SUV, at all acquisition times (i.e.,
PET30, PET60, and PETS80), vertebral bone marrow was
the tissue with the most important ['*FJFLT uptake,
followed by respectively liver and humeral head [**F]FLT
uptakes (SUVmax values are summarized in Table 2). In
contrast, normal breast tissues (contralateral to the pri-
mary breast tumor), thoracic aorta, and muscle showed
the weakest [\*F]FLT uptake.

Normal breast tissues ["*F]FLT uptake did not sig-
nificantly vary over time, and only a weak decrease
in ["SF]JFLT uptake between PET30 and PET80 was
observed for muscle. Probably due to the elimination
and metabolism of [**F]FLT, a significant decrease in
[*8F]FLT uptake was observed between all acquisition times
in aorta (repeated measures ANOVA p < 0.0001) and in
liver (p < 0.0001). In three cases (3, 5%), an intense activity
was observed in the gall bladder, and in one of these three
patients, the main bile duct was also visualized. After glu-
curonidation of ["®F]JFLT in the liver, the metabolites are
excreted in urine which explains a bladder activity in all pa-
tients. In 17 patients (20%), a thymic uptake was observed.

The bone marrow of the 4th dorsal (D4) vertebral body
was the normal tissue displaying the most important
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Table 2 SUVmax of different normal target tissues over time

SUV max PET30 PET60 PET80
m + SD m + SD m + SD
(min-max) (min-max) (min—-max)
Contralateral normal Breast 083 =040 078 038 0.80+0.36
(024-212)  (021-235)  (0.25-2.48)
Muscle 095+028 093+029 086+020
(052-1.75)  (037-165)  (0.32-1.21)
Descending aorta 118+ 034" 1.01 £032" 097+ 030"
(0.38-203)  (045-1.85)  (0.38-2.46)
Humeral head 336+ 1.797 387+ 1.89% 439 + 200"
(0.78-1074)  (064-995)  (0.56-9.57)
Liver 6.79 + 203" 624 +1.99"" 557+ 174"
(296-1265) (292-12.84) (241-9.81)
Vertebral body 821 £ 3.177% 964 + 366" 1085 + 363"
(213-188)  (337-2157) (3.72-20.72)

*significant decrease; p < 0.05
tsignificant decrease; p < 0.0001
#significant increase; p < 0.0001

[*®F]FLT uptake and increase (p < 0.0001) in tracer uptake
over time. The most important variation in D4 uptake was
seen between PET30 and PET80 (SUVmax average in-
crease of 2.64 (+ 32%) + 1.45). The humeral head
[*®F]FLT uptake followed the same variations with a sig-
nificant increase over time (the most important SUVmax
average increase was observed between PET30 and PET80
with a value of 2.64 (+ 31%) + 1.45).

Tumor uptake of ['fIFLT

Table 3 and Fig. 1 summarize the tumor uptake values.
Breast tumor ['*F]JFLT uptake increased significantly
over time (repeated measures ANOVA p < 0.0001). The
most important increase was observed between PET30
and PET80 (SUVmax average increase of 0.61 (+ 11%) +
1.13).

All the 85 primitive breast tumors were clearly visual-
ized at all acquisition times. The ratios between tumor
[*®F]FLT uptake and normal tissues (contralateral nor-
mal breast, aorta, liver, and muscle) were measured for
each acquisition time (Table 4). The highest ratios were
observed between tumor and normal breast tissues for

Table 3 Primary breast tumor SUV over time

Breast Tumor PET30 PET60 PET80
m =+ SD m + SD m + SD
(min-max) (min-max) (min—-max)
SUVmax 5.58 + 3.80™ 597 + 456" 6.19 + 442
(0.73-23.84) (0.75-29.28) (0.88-29.22)
SUVpeak 427 + 263 449 + 310" 466 + 3.10°
(0.66-16.59) (0.63-1963) (0.71-1861)
SUVmean41% 338+ 2277 3.55 £ 266 378 + 270
(0.58-14.35) (0.53-17.32) (0.54-16.86)

*significant increase; p < 0.05
tsignificant increase; p < 0.001
#significant increase; p < 0.0001
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PET60 whereas tumor to liver ratios were the smallest
whatever the acquisition time. All these ratios increased
significantly over time between PET30 and PET60 and
PET30 and PET80 (repeated measures ANOVA p <
0.0001). The most important increase over time was ob-
served for tumor to muscle ratios between P30 and P80
(SUVmax average increase of 3.04 (+ 57%) + 2.90).

Discussion

The concept of dual time point (DTP) has been the sub-
ject of numerous publications with [*®F]FDG in various
cancer types. It has been shown that tissues with high
levels of glycolysis will continue to accumulate [**F]FDG
as ["®F]FDG-6-phosphate, whereas tissues with high
glucose-6-phosphatase activity (such as liver) will peak
early, followed by a decrease in [*®F]FDG retention [1, 2].
Studies on the DTP concept were conducted to define the
optimal time needed between tracer injection and image
acquisitions to distinguish between benign and malignant
lesions.

The first study was conducted in head and neck tumor
patients in 1999 by Hustinx R. et al. [26] and showed an
increase in [*®F]FDG tumor uptake between two acquisi-
tions performed with 28 min of mean interval (70 and
98 min). The use of DTP in lung lesions showed con-
flicting results, but overall it seems that DTP increases
the sensitivity in detecting the malignancy of lesions
while the specificity remains stable or even decreases
[27-33]. One of the main problems pointed out in the-
ses studies is the lack of consensus to define a threshold
of ['*F]EDG uptake for malignancy.

In 1999, Boerner et al. demonstrated the superiority of
a 180-min image acquisition in the detection of breast
cancers and metastatic lymph node lesions compared to
40-min and 90-min acquisitions. In 2005, Kumar et al.
reported a significant increase in SUV between the two
acquisitions of DTP (ASUV) for breast cancer lesions
[34]. The effectiveness of ASUV was reported for the de-
tection of small cancers located in dense breasts (120)
and for the determination of malignancy in breast le-
sions with a low initial uptake (SUVmax < 2.5) [35-37].
However, for the detection of metastatic axillary lymph
nodes, DTP may not increase the overall performance of
[*®F]FDG-PET, due in particular to false positives at the
late time [38, 39].

The main problem of DTP studies is the lack of meth-
odological homogeneity, leading to conflicting results [2].
Several factors could be identified: (1) different delays of
late acquisitions, with sometimes an overlap between early
and late acquisitions coming from different studies (major
source of conflicting results); (2) different gold standards or
criteria for the determination of malignancy (SUVmax
threshold, retention index); (3) different study designs (pre-
or post-therapeutic evaluation, patient population size and
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Fig. 1 Primary breast tumor SUVmax differences between PET80 and PET30 (ASUVmax). ASUVmax is plotted vs PET30 SUVmax. Note that 24
patients showed a decrease in FLT uptake, even though these decreases are marginal or of low amplitude. However, 50% of the patients
correspond to an increase in FLT uptake between 30 and 60 min (79% are ductal carcinoma, and 58% are SBR II)

characteristics, various cancer types, etc.). However, studies
agree on the following points: (1) background noise gener-
ally decreases on late images leading to a better image qual-
ity; (2) uptake increases on late images for the majority of
[ F]FDG-avid tumors; (3) better diagnostic performance

Table 4 Primary breast tumor to background SUVmax ratio

compared to a single acquisition in most studies, i.e., a bet-
ter sensitivity of lesion detection thanks to a better lesion/
background ratio with a gain of specificity; (4) SUVmax that
is dependent of multiple factors should not be used as the
sole criterion but also retention index or a combination of

SUV max ratio PET30 PET60 PET80
m + SD m + SD m + SD
(min-max) (min-max) (min-max)
Primitive Tumor to contralateral Breast 7.94 + 583 9.05 + 672 9.00 + 6.247
(1.16-32.66) (1.38-40.11) (1.5-33.98)
Primitive Tumor to descending Aorta 488 + 2.75™ 6.10 + 4.04* 6.66 + 4.74"
(062-16.22) (0.86-25.46) (0.88-34.79)
Primitive Tumor to Liver 084 + 046" 0.98 + 0.59"* 1.18 + 0.75"
(0.13-2.40) (0.10-297) (0.12-3.56)
Primitive Tumor to Muscle 529 + 3.09" 6.71 + 4.56"" 833 + 515
(0.75-21.10) (0.81-32.53) (1.28-31.09)

tsignificant increase; p < 0.001
#significant increase; p < 0.0001
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SUV and retention index. Finally, the main limitation of
performing DTP examinations is the difficulty of integrat-
ing this technique for all patients into a daily schedule of
Nuclear Medicine services.

In our study, bone marrow and liver displayed the
highest ['**F]FLT uptake in all patients. The intense bone
marrow uptake is related to its important proliferative
activity and to the absence of ["®F]FLT catabolism by
thymidine phosphorylase, due to the 18F labeling at the
3' position of the thymidine which confers the stability
to the molecule [40—42]. The intense liver activity is re-
lated to the hepatic glucuronidation of the molecule, ob-
served only in primates and humans, who have an
enterohepatic cycle. [*®F]FLT metabolites are excreted in
the bile (in our study, three patients had intense gall-
bladder activity) and reabsorbed by the small intestine,
before its urine elimination [4, 41]. By contrast, control-
lateral breast and muscle tissues displayed the lowest
FLT uptake due to their low cell proliferation.

All breast tumors were well individualized at all the
three examination times, due to the high cancer uptake
and/or the low uptake of surrounding tissues, confirm-
ing the results of previous studies with [**F]FLT in
breast cancer patients [7, 12, 14, 43]. The highest uptake
ratios were observed between breast tumor and normal
breast tissues for PET60. We found also a significant in-
crease over time in breast cancer ['*F]FLT uptake. The
most important increase over time was observed for
tumor to muscle ratios between P30 and P80 (SUVmax
average increase of 3.04 (+ 57%) + 2.90). To our know-
ledge, there is currently no publication specifically dedi-
cated to [*®F]FLT DTP in the evaluation of cancers. As
for ['*F]EDG, there is a cellular trapping of ['*F]FLT by
proliferative cells that overexpress “es” transporters allow-
ing [**F]FLT entry into the cell [44] and with a high TK1
activity that phosphorylates [*FJFLT [9, 44—47]. This
process competes with 5'-nucleotidase dephosphorylation,
which is largely minority compared to TK1 activity [10],
and phosphorylated ['*F]JFLT is not incorporated into
DNA [9, 48-50], both explaining intracellular [**F]FLT
accumulation over time. In comparison, the different
“non-proliferating” tissues (aorta, muscle, normal breast,
and liver), with a low level of cells at the end of the G1
and S phase, do not overexpress “es” transporters [51] or
do not exhibit TK1 activity and therefore present a de-
crease in ['®F]FLT uptake over time. This explains also
the significant increase in tumor to not tumor ratios and a
better tumor contrast over time.

Although [**F]FLT is assumed to be more specific for
tumor than ['®F]JFDG, the increase in [**F]FLT tumor
uptake over time could play an important role in asses-
sing the neoplastic character of equivocal breast lesion
and internal lymph node lesions. In addition, while in-
tense activity in the hepatic parenchyma decreases
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significantly over time, the increase in tumoral uptake
over time may allow the detection of metastatic liver le-
sions, using preferably an interval of approximately 1 h
between the early and late acquisitions, this interval
showing the most significant differences in our study.

Conclusion

[*8F]FLT uptake of neoplastic and non-neoplastic prolifer-
ating tissues increases significantly when the time between
tracer injection and image acquisition increases, while this
increase is not observed for “non-proliferating” tissues. This
observation may be useful for distinguishing between
tumor residues and scar tissues, particularly when [*F]FLT
uptake becomes weak after treatment. In addition, changes
in [*®F]FLT uptake over time underscore the importance of
a rigorous methodology when patients are imaged many
times, for instance, when evaluating response to therapy.
To improve the assessment of tumor proliferation, dynamic
[*8F]FLT studies have already been used, but the dual time
point may allow the whole or partial body assessment in-
stead of just a single dynamic volume.
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